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1 Introduction

In many areas, combination of models often perform better than in-
dividual models (for a survey see [1]). This paper focuses on applica-
tion of this approach to construct large-cap portfolios from individual
large-cap mutual funds. The main performance benchmark for these
large-cap managers is the S&P-500 index. Managers have their own cri-
teria and constraints in choosing their portfolio of stocks. The weights
of stocks will be heavily dependent on the optimization function (e.g.
mean-variance) and other constraints that could be specific for individ-
ual managers. In constructing his/her portfolio, we can think of such a
manager as ”voting” that the chosen stocks in his/her sub-portfolio will
be enough to beat the market index. We can combine such individual
voting decisions and consider constructing an ensemble portfolio that,
in some sense, represents the combined voting of individual managers.
The motivation for such an approach is to improve the accuracy of
predictions when the decision is made by several experts. In addition,

We can consider a number of ways to construct such an ensemble
portfolio:

(1) The simplest approach is to take K managers portfolios and al-
locate a fraction 1/K of the money in each of K portfolio at each
re-balancing date. Throughout this paper, we will refer to this as 1/K
portfolio. Such a construction is easy to implement as it does not in-
volve any computation of returns or volatility. The main motivation for
such a construction is the reduction in volatility of the resulting port-
folio. The extend of this decrease in volatility would depend on the
correlation between portfolios. Despite its simplicity, this naive 1/K
model behaves quite well. A comparison of this model with 14 other
standard models evaluated in [2] showed that ”that none of the other
models was considerable better the naive model in terms of Sharpe
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ratio, certainty equivalent return, or turnover”. As pointed in [7], we
do not have a definitive answer as to what is the best way to combine
portfolios in practice.

(2) We could identify stocks in portfolios that are assigned weights
higher then the corresponding weight in the SP-500 index. Managers
may decide to overweight these ”concentrated” stocks because they
believe that a sub-portfolio of these stocks will allow them to generate
returns in excess of the market return (the so-called α) with acceptable
risk. We can then construct portfolios from these a sub-portfolios
(with the same relative weights of concentrated stocks) and construct
a portfolio as equal-weighted average of these portfolios.

In this paper, we consider the ensemble portfolio constructed using
the method (2) described above, namely a portfolio constructed by
averaging sub-portfolios concentrated stocks. As indicated above, if
we think of each sub-portfolio as analogous to a vote that such a sub-
portfolio will beat the market index, then constructing an ensemble
portfolio is analogous to ensemble voting by independent experts to
make a decision to invest in a subset of stocks.

Accordingly, we divide this paper in two parts. In the first part, we
focus on ensemble voting. Specifically, we will show that if we have
a set of managers (with probability of making a wrong decision p <
0.5) then increasing the ensemble size (number of managers) increases
the accuracy. If managers are independent, then we can decrease the
probability of an error (i.e. probability that the sub-portfolio will not
beat the market) as we keep increasing the number of managers for
the construction of the portfolio.

In the second part of the paper, we focus on performance characteris-
tics of ensemble portfolio itself. Specifically, we will show that such a
portfolio provides higher return than the corresponding stocks in the
index and its risk is less than the average risk across managers’ sub-
portfolios. When compared to the naive 1/K strategy, the ensemble
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portfolio provides much higher return with a modest increase in volatil-
ity. As a result, such a portfolio exhibits a much higher Sharpe’e ratio.

Finally we should note that

2 Part I: Analysis of Ensemble Voting

In this part we focus on analyzing probability in ensemble voting. Our
general setting is the following. We assume that we have fund managers
with each fund manager making an independent decision to invest or
not to invest. We make an investment decision based on the majority
decision of these managers.

Formally, we describe the model as follows: we have N = 2n + 1
managers. We need an odd number of managers to use for the majority
voting. For each manager i, let pi < 1 denote the probability that this
manager makes a mistake in his/her prediction. We can then model
this by a simple Bernouilli distribution [3].

Let random variable Xi denote the decision of manager i as follows:

Xi =

{
1 if manager i makes a mistake
0 otherwise

The probability distribution P () for each manager is given by a simple
rule

P (Xi) =

{
pi if Xi = 1

qi = 1− pi otherwise

Define random variable X = X1+X2+ · · ·+XN . This random variable
takes values from 0 (when all managers make the correct decision) to
N (when all managers make the wrong decision). The expected value
of this variable is E[X] = np and its variance σ2(X) = np(1 − p). In
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particular, X ≤ n denotes the event when the majority of the managers
make the right decision.

We would like to investigate when voting with ensemble of managers
gives us a higher probability of success than using just one manager
(even the best one with the lowest pi). In other words, we would like
to investigate when

P (X ≤ n) > max
i

(1− pi)

Moreover, we will establish bound on error probability of ensemble
voting and show that this probability can be made arbitrarily small by
taking enough managers for the ensemble.

To that end, we proceed as follows. We start with a model when all
managers are independent and make decision with the same proba-
bility. We will then extend this to a more general case when these
probabilities are different.

2.1 Independent Fund Managers with Same Pre-

diction Accuracy

In this case, the model of ensemble voting is a binomial distribution
model [3]. We have N = 2n+1 independent managers. The probability
that exactly k managers make incorrect decision is

P (X = k) =

(
N

k

)
pkqN−k

5



We will find it convenient to introduce the following notation for the
cumulative distribution function

F (k,N, x) = P (X ≤ k) =
k∑

i=0

(
N

i

)
xi(1− x)N−i

With this definition, the probability of correct decision is F (n, 2n +
1, p). In other words, it is the probability that at least n + 1 fund
managers made the correct decision.

Example 1: we have N = 3 fund managers. The probabilities and
cumulative function can be written explicitly and are summarized in
the table below:

Table 1: Voting with 3 Fund Managers

k P (X = k) F (k, 3, p)
0 q3 q3

1 3pq2 q3 + 3pq2

2 3p2q q3 + 3pq2 + 3p2q
3 p3 1

For example, the probability that exactly one manager makes a wrong
decision is

P (X = 1) = 3p(1− p)2

With majority voting, the probability of correct prediction is the prob-
ability that no more than one manager makes a wrong decision. There-
fore, the probability of a right decision by ensemble is:

F (1, 3, p) = P (X = 0) + P (X = 1) = (1− p)3 + 3p(1− p)2
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How does the error by ensemble compare with that of an individual
manager? Specifically, is there any range of p for which it is better to
use ensemble voting?

We will show that as long as error probability of individual managers
p < 0.5, using ensemble voting reduces the error. First, we show it
graphically in the following plot below:
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Figure 1: Comparison of 3-manager ensemble with Individual manager

We see that if the probability of error p < 0.5, then using ensemble
gives you better result than using an individual manager.

We can also show it algebraically. If we were to use a single manager,
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then the probability of the right decision by such a manager is (1− p).
Using ensemble voting, the probability of correct decision is F (1, 3, p).
Therefore, we are looking for p for which,

(1− p)3 + 3p(1− p)2 > 1− p
Or, equivalently,

(1− p)2 + 3p(1− p) > 1

After some elementary algebra, we obtain p < 0.5. This result means
that for the case of 3 managers, if the probability of error is less than
0.5 then using ensemble voting would result in lower error rate. This
result generalizes to the general case of any N .

Example 2: Let us show how accuracy increases with the number of
managers. In the plot below, we compare probabilities of voting errors
for ensemble sizes N = 3, 5, 11.
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Figure 2: Effect of increasing the number of managers in the ensemble

Just as in the previous case, voting by ensemble gives lower error than
using an individual manager as long as the probability of error p < 0.5.
In this range, we can see that for any probability value, the ensemble
voting error decreases as we increase the number of managers.

As an illustration, consider probabilities of voting errors for p = 0.2,
p = 0.3 and p = 0.4 The voting errors are by the corresponding en-
sembles are summarized in the table below:

From this table, we can see that for any number of managers, as we in-
crease p our accuracy decreases. And in fact, once p.0.5 using ensemble
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Table 2: Comparison of Error probabilities for Different Ensemble Sizes

N p = 0.2 p = 0.3 p = 0.4
1 0.2 0.3 0.4
3 0.10 0.23 0.35
5 0.06 0.16 0.32
11 0.01 0.08 0.25

voting gives us worse results than using a single manager.

On the other hand, for any p the accuracy increases as we increase
the number of managers. For example, take p = 0.3. the probability
of error drops from 0.23 (in case of 3 managers) to 0.08 in case of 11
managers

2.2 Some General Results

We now establish two general results. As before, let

F (k,N, x) = P (X ≤ k) =
k∑

i=0

(
N

i

)
xi(1− x)N−i

Then since
(
N
k

)
=
(

N
N−k
)
, it is easy to show that

1 =
n∑

i=0

(
2n+ 1

i

)
piq2n+1−i +

2n+1∑
i=n+1

(
2n+ 1

i

)
piq2n+1−i

=
n∑

i=0

(
2n+ 1

i

)
piq2n+1−i +

n∑
i=0

(
2n+ 1

i

)
qip2n+1−i

= F (n, 2n+ 1, p) + F (n, 2n+ 1, 1− p)

(1)
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We will find it convenient to define

Ai(n, x) =

(
2n+ 1

i

)
xi(1− x)2n+1−i

With this definition, we have

F (n, 2n+ 1, p) =
n∑

i=0

Ai(n, p) , F (n, 2n+ 1, 1− p) =
n∑

i=0

Ai(n, 1− p)

If p < q then (1− p)/p > 1 and ,therefore, for each i, the ratio

Ai(n, p)

Ai(n, 1− p)
=

(
1− p
p

)2n+1−2i
> 1

.
Therefore, Ai(n, p) > Ai(n, 1−p) and this implies that F (n, 2n+1, p) >
F (n, 2n+ 1, 1− p). Since, F (n, 2n+ 1, p) + F (n, 2n+ 1, 1− p) = 1 we
immediately obtain:

F (n, 2n+ 1, p) > 0.5

We will now strengthen this statement by showing that if p < 0.5 than
as we increase the size of the ensemble, the accuracy of ensemble voting
increases.

Proof: The decision to invest is made by taking the majority decision
of weak learners. In the ensemble we must have an odd number 2n+ 1
of managers. We therefore proceed by induction on n:

Basic step: This was proven in example 1 where we showed that
F (1, 3, p) = (1− p)3 + 3p(1− p)2 > 1− p for p < 0.5

Inductive Step: we need to establish the following:

F (n+ 1, 2(n+ 1) + 1, p) > F (n, 2n+ 1, p)
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We use the relation
(
n
i

)
=
(
n−1
i−1
)

+
(
n−1
i−1
)

to obtain(
2n+ 3

i

)
=

(
2n+ 2

i

)
+

(
2n+ 2

i− 1

)
=

(
2n+ 1

i

)
+ 2

(
2n+ 1

i− 1

)
+

(
2n+ 1

i− 2

) (2)

From this after some algebraic manipulations we obtain:

F (n+ 1, 2n+ 3, p) =

(
2n+ 1

n+ 1

)
pn+1qn(p2 + q2)

+ F (n, 2n+ 1, p)

[
q2 +

2p

q
+ p2

]
> F (n, 2n+ 1, p)

[
q2 +

2p

q
+ p2

] (3)

Since 0 < q < 1 we have 1/q > 1 > q and, in particular, p/q > pq.
Therefore,

q2 +
2p

q
+ p2 > q2 + 2pq + p2 = 1

This immediately gives us the desired result, namely

F (n+ 1, 2n+ 3, p) > F (n, 2n+ 1, p)

The above result provides the mathematical foundation for using en-
semble: if we have a set of weak learners with p < 0.5, then increasing
the size of the ensemble increases the accuracy.
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2.3 Bounds on Ensemble Error Probabilities

Let us now return to the general case of N managers with independent
voting and the resulting binomial distribution. The mean of the distri-
bution is µ = Np and the variance σ2 = Np(1− p). The probability of
correct decision by the ensemble is the following cumulative distribu-
tion function F (n, 2n+ 1, p). What we need to do is to establish some
bounds on F (n, 2n+ 1, p).

Intuitively, when we average a set of random variables, we should get
something close to the expected value. For a general distribution, the
justification for this is the Chebyshev’s inequality: if X is a random
variable with expectation µ and variance σ2 then for any ε > 0 we
have:

P (|X − µ| ≥ a) ≤ σ2

ε2

When applied to the binomial distribution with identically distributed
random variables Xi (and remembering that E[Xi) = p, the Cheby-
shev’s inequality gives us

P

(∣∣ 1

N

n∑
i=1

Xi − p
∣∣ ≥ ε

)
≤ σ2

Nε2

In case of a sum of independent random variables, we can obtain even
sharper bounds as shown below. Specifically, we propose to use Hoeffd-
ing’s inequality [4]. Let X1, . . . , XN be random, identically distributed
random variables with 0 ≤ Xi ≤ 1. Then, the Hoeffding’s inequality
states that

P

(∣∣ 1

N

N∑
i=1

Xi − E[X]
∣∣ > ε

)
≤ 2 exp(−2Nε2)
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When applied to binomial distribution (recall that E[X] = np), we
have the following

P (X ≥ (p+ ε)N) ≤ exp(−2Nε2)

Let us see how we can use this for our ensemble voting. The probability
of voting error is P (X ≥ n + 1). If we compute ε (and remembering
that N = 2n+ 1) as follows

(p+ ε)(2n+ 1) = n+ 1

Solving for ε, we have

ε =
n+ 1

2n+ 1
− p

From this immediately follows that the error probability of ensemble
is bounded above as follows:

P (X ≥ n+ 1) ≤ exp(−2ε2N)

For any n > 0 it is trivial to show that for any N we have 0.5 − p <
ε < 1− p and, therefore, ε is bounded. It immediately follows that as
N → ∞, the term exp(−2ε2N) → 0. Therefore, for fixed p < 1/2, as
we increase the number of managers we obtain

P (X ≥ n)→ 0

This provides a mathematical justification for using the ensemble vot-
ing. This is illustrated in the figure below:
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Figure 3: Improvement of Accuracy with Ensemble Size

Examining the figure, we see a sharp decrease in error probability as
we increase the number of managers.

2.4 Independent Managers with Non-identical Prob-

abilities

In the previous section, we assumed that manager probabilities are
independent and identical. Generalization to independent managers
with non-identical probabilities is straightforward.
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As before, assume that each manager i makes a decision with probabil-
ity pi < 0.5. Let X = X1+X2+···+XN . Let p = (p1+p2+···+pN)/N .
Then, Hoeffding’s lemma can be written as follows:

P (X −Np ≥ t) ≤ exp

(
−2t2

N

)
Define t = Nε. Then, the Hoeffding’s lemma can be re-written as
follows:

P (X ≥ (p+ ε)N) ≤ exp(−2ε2N)

As before, we compute ε from (p+ ε)(2n+ 1) = n+ 1 to obtain

ε =
n+ 1

2n+ 1
− p

and
P (X ≥ n+ 1) ≤ exp(−2ε2N)

As before, we show that ε is bounded, and this would immediately
imply that the error probability of ensemble voting

P (X ≥ n)→ 0

as we increase the number of managers in the ensemble.

2.5 Incorporating Dependencies in Ensemble Vot-

ingy

In the discussion above, we assumed that individual manager decisions
are independent of decisions of other managers. We can think of their
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choosing portfolios as choosing stocks from an urn with replacement.
We now extend our analysis to handle dependency.

There are specific dependency assumptions for the probability distribu-
tions for which specialized inequalities can be derived [6]. We will use
the most general form of the bounds, applicable to any distribution,
namely the one derived from Chebyshev’s inequality.

To proceed, let us consider the case where each manager makes a de-
cision with probability p but Xi are not independent. Specifically, we
assume that the correlation coefficient for any Xi and Xj is ρ∗. Then,
the variance of X = X1 + · · ·+XN is

σ2(X) =
∑
i

σ2(Xi) +
∑
i6=j

cov(Xi, Xj)

= Np(1− p) +
∑
i6=j

ρ∗σ(Xi)σ(Xj)
(4)

The variance of Xi is p(1 − p). Therefore, we can re-write the above
expression for the variance as follows:

σ2(X) = Np(1− p) + (N 2 −N)ρ∗p(1− p)

= Np(1− p)
[
1 + (N − 1)ρ∗

]
(5)

If the correlation ρ∗ = 0 then the above expression reduces to Np(1−p)
- the variance of the sum of independently distributed Bernouilli vari-
ables. The factor (N − 1)ρ∗ shows how the variance increases as the
correlation ρ is increased. In particular, if ρ∗ << 1/N then the corre-
lation would have negligible effect on the variance. If the correlation
is high, then we can only get small enough variance if the probability
of an error p is very small.
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With the above expression for variance of X we can use the Chebyshev
inequality for X to obtain

P

(∣∣X
N
− p
∣∣ ≥ ε

)
≤ σ2(X)

Nε2
=
p(1− p)

ε2

[
1 + (N − 1)ρ∗

]
As before, if we let ε be the solution of (p + ε)(2n + 1) = n + 1 and
remembering that N = 2n+ 1 then we obtain

ε =
n(1− 2p) + (1− p)

2n+ 1

This immediately gives the following upper bound on the probability
of error in the ensemble:

P (X ≥ n) ≤ p(1− p)
[
1 + 2nρ∗

][
n(1− 2p) + (1− p)

2n+ 1

]−2
For large n we have

n(1− 2p) + (1− p)
2n+ 1

7→ 1− 2p

2
+O(1/n)

This gives us the following bound for the error probability (for large
n):

P (X ≥ n) ≤ 4p(1− p)
(1− 2p)2

[
1 + 2nρ∗

]
The above bound shows that to decrease the probability of an error in
the ensemble, we need to make the probability of error of individual
managers extremely small (to compensate for the increase in variance
du to correlation ρ∗.

In the future, we hope to consider sharper bounds on the ensemble
error probabilities.
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3 Part II: Analysis of the Ensemble
Portfolio

In this section we consider the properties of the ensemble portfolio con-
structed from ”concentrated” sub-portfolios of individual managers.
We use the word ”concentrated” sub-portfolio to emphasize that we
are considering a subset of stocks from portfolios which have higher
weight than the corresponding weight in the SP-500 index. The ensem-
ble portfolio is constructed by averaging concentrated sub-portfolios
across managers. By contrast, a 1/K portfolio is constructed by sim-
ply (equal-weighting) averaging of K portfolios.

A manager may decide to overweight particular stocks in a portfolio
because the manager believes that this subset of portfolio stocks will
provide a necessary return to outperform the market index without
taking too much additional risk. In some sense, concentrating some
stocks in a portfolio represents a manager’s vote that such a portfolio
will outperform the market. Therefore, intuitively, the construction
of ensemble portfolio represents a result of ensemble voting by the
managers that a particular set of stocks will outperform the market.

Our objective is to compare the performance of an ensemble portfolio
with the market and with the 1/K portfolio and to argue that such en-
semble portfolios provide better performance both in terms of returns
and risk-adjusted returns than 1/K portfolio.

We start with some notation. Assume that we have there are a finite
set Ω of N > 500 large-cap stocks Ω = {S1, S2, . . . , SN}. Without loss
of generality, assume that the first 500 stocks appear in the SP-500
index. A large cap portfolio will consist of some stocks that are in
the index and some stocks that are not in the index. There are K
managers portfolios are K original portfolios P1, ..., PK . We use index
k to denote portfolios and i to denote security Si. Let weight of each
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security Si in the SP-500 index be vi and let the weight of each security
Si in portfolio Pk be wik.

With this notation, we can represent each portfolio as N -dimensional
vector of weights. Specifically, the market portfolio M ∗ is the vector

M ∗ = (v1, v2, . . . , v500, 0, . . . , 0)

whereas a portfolio Pk is the vector

Pk = (w1k, w2k, . . . , wNk)

In a portfolio Pk we may have a stock Si with wki > vi. In other words,

a manager decides to pick a stock and assign its weight to be more than
the weight of this stocks in the SP-500 index. A manager is convinced
that concentrating such stocks will help the portfolio achieve its goal
of outperforming the market index. Therefore, a manager portfolio
Pk consists of two disjoint sub-portfolios of stocks: the concentrated
sub-portfolio Ck and non-concentrated sub-portfolio Uk. The stocks
in Ck have higher weight than corresponding stocks in SP-500. The
stocks in Uk are either not in the index or have weight not higher than
the corresponding weights in the index. Mathematically, we can write
Pk = Ck + Uk

Example 1: Assume that we have a universe Ω of just 5 stocks Ω =
{S1, S2, S3, S4, S5} Assume that the that SP-500 index consists of just
4 stocks {S1, S2, S3, S4} each with the same weight v1 = v2 = v3 = v4 =
0.25. Therefore, the market portfolio is M ∗ = (0.25, 0.25, 0.25, 0.25, 0).
Assume that we have two portfolios P1 and P2 with the following com-
position:

Porfolio 1: 30% of P1 is S1 and 30% of P1 is S2. The remaining 40%
is invested in S5 that is not in the index. This portfolio is given by the
following vector of weights:

P1 = (0.3, 0.3, 0, 0, 0.4)

20



Within this portfolio, the weights for stocks S1 and S2 are greater
than the corresponding weights in the index. Therefore, the con-
centrated sub-portfolio C1 will consist of just two stocks S1 and S2

with corresponding weights w11 = 0.3 and w12 = 0.3, whereas the
un-concentrated sub-portfolio U1 will consist of just one stock S5 with
weight w15 = 0.4. Therefore, we can write P1 = C1 + U1 where

C1 = (0.3, 0.3, 0, 0, 0) and U1 = (0, 0, 0, 0, 0.4)

Portfolio 2: 50% of P2 is S1, 30% of P2 is S2, 10% of P2 is S3 and 10%
of P2 is S4. This portfolio is given by the following vector of weights:

P2 = (0.5, 0.3, 0.1, 0.1, 0)

Note that in this portfolio all stocks are in the market index. However,
only the first two S1 and S2 have weights greater than the in the index,
whereas the stocks S3 and S4 have weights less than in the market
index. Therefore, we can write P2 = C2 + U2 where

C2 = (0.5, 0.3, 0, 0, 0) and U2 = (0, 0, 0, 0.1, 0.1)

3.1 Construction of Ensemble and 1/K Portfolios

Now we construct our ”ensemble” portfolio P ∗ as follows: From each
portfolio Pk, we consider consider the concentrated sub-portfolio Ck.
This sub-portfolio will have weights that do not add up to 1 (unless
Pk = Ck). Therefore, we need to normalize the weights first. To that
end, let I denote the N -dimensional unit vector (1, 1, . . . , 1), and let
(X, Y ) denote the dot product of two vectors X and Y . We computed
the normalization constant λk = (Ck, I)−1. Then, the normalized con-
centrated sub-portfolio is the vector λkCk, then it is easy to show that
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its weights now now add to 1. It is easy to show that the normalization
constants λk ≥ 1. By construction, for each security Si in the concen-
trated sub-portfolio Ck its weight wik > vi. we have since λk > 1 and
the weights in the original

Our ensemble portfolio P ∗ is constructed by averaging the normalized
concentrated sub-portfolios:

P ∗ =
1

K
(λ1C1 + · · ·+ λKCK)

By contrast, a 1/K portfolioQ∗ is constructed by averaging the original
portfolios:

Q∗ =
1

K
(P1 + · · ·+ PK)

It is easy to show that the normalization constants λk ≥ 1. By con-
struction, for each security Si in the concentrated sub-portfolio Ck its
weight wik > vi. Therefore, for such security in the ensemble portfolio
its weight λkwik ≥ wik > vi.

Since for each portfolio Pk = Ck +Uk, we can rewrite the 1/K portfolio
Q∗ as follows:

Q∗ =
1

K
(P1 + · · ·+ PK)

=
1

K
((C1 + U1) + · · ·+ (CK + UK))

1

K
(C1 + · · ·+ CK) +

1

K
(U1 + · · ·+ UK)

= C∗ + U ∗

(6)

Therefore, the 1/K portfolio can be represented as a sum of two
disjoint portfolios: the average C∗ of K concentrated sub-portfolios
{C1, . . . , CK} and the average U ∗ of K non-concentrated sub-portfolios
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{U1, . . . , UK}. On the other hand, by construction, the ensemble port-
folio P ∗ will contain the same stocks as the C∗ but with higher weights
since λk > 1 for all k.

Let us illustrate the construction of such portfolios using the examples
presented in the previous section.

Example: Let us consider the same portfolios two portfolios P1

and P2 from our previous example. Recall that these were defined as
follows:

M ∗ = (0.25, 0.25, 0.25, 0.25, 0)

P1 = (0.3, 0.3, 0, 0, 0.4)

P2 = (0.5, 0.3, 0.1, 0.1, 0)

(7)

We have P1 = C1 + U1 and P2 = C2 + U2 where

C1 = (0.3, 0.3, 0, 0, 0) and U1 = (0, 0, 0, 0, 0.4)

C2 = (0.5, 0.3, 0, 0, 0) and U2 = (0, 0, 0.1, 0.1, 0)
(8)

To construct the ensemble portfolio, we need to re-normalize the weights
in the concentrated sub-portfolios C1 and C2.

For C1 we compute λ1 = (C1, I)−1 = (0.3 + 0.3)−1 = 12
3 . The first

normalized concentrated sub-portfolio is then

λ1C1 = (0.5, 0.5, 0, 0, 0, 0)

For C2 we compute λ2 = (C2, I)−1 = (0.5 + 0.3)−1 = 1.25. The second
normalized concentrated sub-portfolio is then

λ2C2 = (0.625, 0.375, 0, 0, 0, 0)
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The ensemble portfolio P ∗ is constructed by averaging the normalized
concentrated sub-portfolios λ1C1 and λ2C2:

P ∗ =
1

2
(λ1C1 + λ2C2) = (0.5625, 0.4375, 0, 0, 0)

By contrast, the 1/K portfolioQ∗ is computed by averaging the weights
in the original portfolios:

Q∗ =
1

2
(P1 + P2) = (0.4, 0.3, 0.05, 0.05, 0.2)

We can also write the 1/K portfolio Q∗ = C∗ + U ∗ where

C∗ =
1

2
(C1 + C2) = (0.4, 0.3, 0, 0, 0)

U ∗ =
1

2
(U1 + U2) = (0, 0, 0.05, 0.05, 0.2)

(9)

In the ensemble portfolio, by construction the (positive) weight of each
security is greater than the corresponding weight of this security in
the index (securities S1 and S2 in the above example). The ensemble
portfolio will not contain any stocks that are not in the market index.
For the 1/K portfolio this is not the case. If we look at our example
above, the weights of the first two securities S1 and S2 are greater
than their weights in the market portfolio but the weights of the other
two securities S3 and S4 are lower than the corresponding weights in
the market index. In addition, note that the 1/K portfolio contains
security S5 with weight 0.2 that is not in the index.
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3.2 Risk/Return Analysis of Ensemble Portfolios

and 1/K Portfolios

We are now ready to establish some general results on the performance
of the ensemble portfolio P ∗. To that end, we need some additional
notation. Let R() denote the return. In particular, R(Si) denotes the
return of security Si, whereas for any portfolio P let R(P ) denote the
return of portfolio specified by the vector P . Similarly, σ(P ) denote
the volatility of the returns in the portfolio specified by the vector of
weights P . Let M ∗ denote the portfolio obtained by taking the same
stocks as in P ∗ but with weights vi in the SP-500 index. We will refer
to M ∗ as market portfolio.

Recall, that after normalization all weights in the normalized concen-
trated sub-portfolios λkCk add to 1, and therefore the weights in the
ensemble portfolio add to 1 as well

(P ∗, I) =
1

K
(
∑
k

λkCk, I) =
1

K

∑
k

(λkCk, I) =
1

K

∑
k

1 = 1

Let w∗ki denote the normalized weight of security Si in the concentrated
sub-portfolio Ck. And let w∗i denote the weight of the security Si in
the ensemble portfolio.

We are now ready to analyze the properties of the ensemble portfolio
P ∗. Our first result is the following:

R(P ∗) > R(M ∗)

Proof: We assume that by concentrating a portfolio Pk in some
stocks, a manager takes a bet that the concentrated portion (after
normalization) will outperform the market. In other words, R(λkCk) >
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R(M ∗). If this is the case for all managers, then for the ensemble
portfolio

R(P ∗) = R(
1

K

∑
k

λkCk) =
1

K

∑
k

R(λkCk) > R(M ∗) (10)

Our next results relate to the risk (volatility) σ(P ∗) of the ensemble
portfolio P ∗ - we use standard deviation of returns as our risk measure.
We obtain two different bounds for the risk of our ensemble portfolio:

The first result gives a upper bound in terms of volatility of underlying
securities. Specifically, the volatility (risk) of ensemble portfolio is
bounded by a weighted average of volatilities (risks) of the underlying
securities where the weights are those used in the construction of P ∗.

The second result gives an upper bound in terms of volatility of under-
lying sub-portfolios. Specifically, the volatility of ensemble portfolio is
no more than the average of volatilities σ(P ∗1 ), . . . , P ∗K) of underlying
sub-portfolios.

To proceed, we need some additional notation. Let cov(Si, Sj) de-
note the covariance of return distributions for stocks Si and Sj and let
σ(Si) denote the standard deviation of returns for Si. Then, using the
Cauchy-Schwartz inequality

|cov(Si, Sj)| ≤ σ(Si)σ(Sj)

we obtain the following for the variance of returns for the ensemble
portfolio P ∗

σ2(P ∗) =
N∑

i,j=1

w∗iw
∗
jcov(Si, Sj) ≤

N∑
i,j=1

w∗iw
∗
jσ(Si)σ(Sj)

=

[ N∑
i=1

w∗i σ(Si)

][ N∑
j=1

w∗jσ(Sj)

]
=

[ N∑
i=1

w∗i σ(Si)

]2 (11)
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And, therefore,

σ(P ∗) ≤
N∑
i=1

w∗i σ(Si) (12)

This means that the risk (volatility) of the ensemble portfolio P ∗ is less
than the weighted average risk (volatility) of individual stocks where
the weights correspond to the weights of securities in the ensemble
portfolio.

Let us now relate the risk of the ensemble portfolio to the risk of
underlying concentrated sub-portfolios. By construction, we can write
P ∗ = (λ1C1 + · · ·+ λKC

∗
K)/K. Therefore, for the risk of the ensemble

portfolio we obtain:

σ2(P ∗) =
K∑

k,m=1

1

K2
cov(λkCk, λmCm) ≤ 1

K2

K∑
k,m=1

σ(λkCk)σ(λmCm

=
1

K2

[ K∑
k=1

σ(λkCk)

][ K∑
m=1

σ(λmCm)

]
=

[
σ(λ1C1) + · · ·+ σ(λKCK)

K

]2
(13)

Therefore,

σ(P ∗) ≤ σ(λ1C1) + · · ·+ σ(λKCK)

K

This shows that the risk of the ensemble portfolio P ∗ is not worse than
the average risk across (normalized) concentrated sub-portfolios.
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4 Analysis of Sharpe’s Ratio for the En-
semble Portfolio

In this section, we will focus on the Sharpe’s ratio of the ensemble
portfolio. Formally, the Sharpe’s ratio is defined as the average return
in excess of the risk-free rate per unit of volatility. To simplify the
computation, we will assume that the risk-free rate is 0. With this
assumption, the Sharpe’s ratio of the ensemble portfolio is

Sharpe(P ∗) =
R(P ∗)

σ(P ∗)

We will show that this Sharpe’s ratio is greater than the Sharpe’s ratio
of the SP-500 index. We will show this by arguing that for each sub-
portfolio Ck of concentrated stocks we have

Sharpe(Ck) ≥ Sharpe(M ∗)

Consider the concentrated sub-portfolio Ck of manager k. Recall that
in this portfolio, we have N securities S1, . . . , SN with weights wik for
each security i satisfying wik > vi where vi is the weight of Si in the SP-
500 index. In choosing these stocks, the manager hopes to outperform
the market without taking too much additional risk. In particular, we
will assume that this concentrated sub-portfolio of selected stocks has
a Sharpe’s ratio greater than the market. With this assumption, our
task is to examine the Sharpe’s ratio of the ensemble portfolio.

We argue as follows. When we construct the ensemble portfolio, we
take the concentrated sub-portfolios C1, . . . , CK and normalize the
weights in each sub-portfolio Ck by the normalization constant λk so
that the weights so that they add to 1. Mathematically, the normalized
concentrated sub-portfolio is λkCk. Our first result is the following:

Sharpe(Ck) = Sharpe(λkCk)
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Proof: The return of the ”normalized” sub-portfolio λkCk is

R(λkCk) =
∑
i

w∗ikR(Si) =
∑
i

λkwikR(Si)

= λk
∑
i

wikR(Si) = λkR(Ck)
(14)

On the other hand, for the variance of the normalized portfolio

σ2(λkCk) =
∑
i,j

[λkwik][λkwjk]cov(Ri, Rj)

= λ2k
∑
i,j

wikwjkcov(Ri, Rj) = λ2kσ
2(Ck)

(15)

From this we immediately obtain

Sharpe(λkC
∗
k) =

R(λkCk)

σ(λkCk)
=
λkR(Ck)

λkσ(Ck)
= Sharpe(Ck)

We made an assumption that when choosing the concentrated sub-
portfolio Ck of stocks with higher weights than those in SP-500, the
manager picks such stocks so that the Sharpe’s ratio of any sub-
portfolio is superior to that of the market, i.e. for all k:

Sharpe(Ck) ≥ Sharpe(M ∗)

With this assumption, the above result implies that for the normalized
portfolio λkCk we have

Sharpe(λkCk) ≥ Sharpe(M ∗)
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We are now ready to derive some bounds for the Sharpe’s ratio of the
ensemble portfolio P ∗. We will use the following inequality:

mini

(
1

ai

)
≤ K

a1 + · · ·+ aK

Let λhCh be the normalized concentrated sub-portfolio with the highest
volatility. Then, for the Sharpe’s Ratio of the ensemble portfolio we
have

Sharpe(P ∗) =
R(P ∗)

σ(P ∗)
≥ K ·R(P ∗)

σ(λ1C1) + · · ·+ σ(λkCK)

≥ K ·R(P ∗)

σ(λhCh)
≥ R(λhCh)

σ(λhCh)

= Sharpe(λhCh)

= Sharpe(Ch)

(16)

The Sharpe’s ratio of the ensemble portfolio is greater than the Sharpe’s
ratio for the most volatile concentrated sub-portfolio. Since each con-
centrated component Ck for any portfolio is assumed to have the
Sharpe’s ratio greater than the market, it follows that the Sharpe’s
ratio of the ensemble portfolio is higher than that of the market:

Sharpe(P ∗) ≥ Sharpe(M ∗)

Let us now summarize our main results for the ensemble portfolio P ∗:

(1) the return of the ensemble portfolio is higher than the return of
the corresponding stocks in the SP-500 index

(2) the volatility of the ensemble portfolio is less than the volatility of
the corresponding sub-portfolios
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(3) The Sharpe’s ratio of the ensemble portfolio is higher than that of
the market

5 A Detailed Numerical Example

We consider 10 large-cap mutual funds {BCSIX, CAFCX, CFNBX,
CWMBX, DODGX, FMIHX, HCAIX, MMDEX, RYSEX,VPCCX}.
From these ten mutual funds, we constracted two portfolios: the en-
semble portfolio P ∗ and the 1/K portfolio Q∗. In addition, we have
the SP-500 market portfolio M ∗.

First, we computed rolling annual returns for the three portfolios: P ∗,
Q∗ and M ∗ summarized below
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Figure 4: Rolling Annual returns

Next, let us examine the tracking error for the rolling returns. We use
∆ to indicate tracking errors. Tracking errors for both 1/K portofo-
lio Q∗ and ensemble portfolio P ∗ are computed relative to the market
portfolio. For example, tracking error for returns of the ensemble port-
folio is ∆R(P ∗) = R(P ∗)−R(M ∗).
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Table 3: Annual Returns for Portfolios
year SP-500 1/K ensemble
2008 -36.09 -32.98 -31.59
2009 26.46 33.62 39.66
2010 15.06 14.58 13.17
2011 2.11 0.25 2.42
2012 16.75 16.82 19.42
2013 32.39 35.15 49.23
2014 13.69 9.90 17.28
2015 1.38 0.55 3.18
2016 11.96 12.47 15.73

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
date

5

0

5

10

15

Returns Tracking Error (vs. SP500)
ensemble
1/K

Figure 5: Rolling Annual returns
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Let us summarize the annual tracking errors in the table below:

Table 4: Tracking Error for Annual Returns

year SP-500 1/K ensemble
2008 -36.09 3.11 4.50
2009 26.46 7.16 13.19
2010 15.06 -0.48 -1.89
2011 2.11 -1.86 0.31
2012 16.75 0.07 2.67
2013 32.39 2.76 16.85
2014 13.69 -3.79 3.59
2015 1.38 -0.83 1.80
2016 11.96 0.51 3.77

average 9.30 0.74 4.98

The ensemble portfolio outperform the market in 8 years out of 9 ex-
cept for 2010. In that year, the ensemble portfolio under-performed
the market by about 150 basis points. The average tracking error for
ensemble portfolio is about 500 basis points. In some years, this track-
ing error is quite large: for example in 2009 and 2013, the ensemble
portfolio over-performed the market by more than 1,000 basis points.
By contrast, the 1/K portfolio has a tracking error of about 75 basis
points and most of the time follows the market index quite closely.

Let us now examine the rolling volatility
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Figure 6: Rolling Annualized Volstility

Let us summarize the annualized portfolio volatility in the table below:

The annualized volatility is practically identical to that of the market.
On the other hand, the annualized volatility of the ensemble portfolio is
about 10% higher than the market. In fact, if we examine the tracking
error for the annualized volatility, we do not see a significant increase
in volatility as compared to market. To see the increase in volatility
by the ensemble portfolio, consider the tracking error for the volatility
Let us now examine the tracking error of this volatility
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Table 5: Rolling Annualized Volatility

year SP-500 1/K ensemble
2008 41.03 36.01 39.60
2009 27.27 25.10 27.82
2010 18.06 17.50 18.87
2011 23.29 23.73 24.27
2012 12.75 13.08 14.28
2013 11.07 11.15 12.75
2014 11.38 11.94 13.65
2015 15.49 14.78 16.54
2016 13.10 13.69 15.07

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
date
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Figure 7: Volatility Tracking Error
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Let us illustrate the above point by examining tracking errors in an-
nual return and annualized volatility for both the 1/K and ensemble
portfolios relative to that of the market. Our results are summarized
below:

Table 6: Tracking Errors for Annual Returns and Volatility

Date
Returns Volatility

SP-500 1/K ensemble SP-500 1/K ensemble
2008 -36.09 3.11 4.50 41.03 -5.02 -1.43
2009 26.46 7.16 13.19 27.27 -2.18 0.55
2010 15.06 -0.48 -1.89 18.06 -0.56 0.80
2011 2.11 -1.86 0.31 23.29 0.44 0.98
2012 16.75 0.07 2.67 12.75 0.33 1.53
2013 32.39 2.76 16.85 11.07 0.07 1.68
2014 13.69 -3.79 3.59 11.38 0.56 2.27
2015 1.38 -0.83 1.80 15.49 -0.71 1.04
2016 11.96 0.51 3.77 13.10 0.60 1.98

average 9.30 0.74 4.98 19.27 -0.72 1.05

What we observe from the above is the significant increase in annual-
ized returns and a modest increase in volatility. Therefore, we would
expect the Sharpe’s ratio of the ensemble portfolio to be higher than
that of the market. In the figure below, we plot the rolling Sharpe’s
ratio for the three portfolios:
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Figure 8: Rolling Annual returns

Let us summarize annual Sharpe’s ratio for our portfolios in the table
below:

We can see that in every year except for 2010, we get better Sharpe’s
ratio for the ensemble than for the 1/K portfolio.

To see the increase in the Sharpe ratio, let us examine the difference
between ensemble and 1/K portfolio Sharpe’s ratio with that of the
market Turning now to the Sharpe’s Ratio
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Table 7: Rolling Annual Sharpe’s Ratios

year SP-500 1/K ensemble
2008 -0.88 -0.92 -0.80
2009 0.97 1.34 1.43
2010 0.83 0.83 0.70
2011 0.09 0.01 0.10
2012 1.31 1.29 1.36
2013 2.92 3.15 3.86
2014 1.20 0.83 1.27
2015 0.09 0.04 0.19
2016 0.91 0.91 1.04

average 0.83 0.83 1.02

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
date
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Figure 9: Rolling Sharpe Ratio Tracking Error
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6 Numerical results

In the previous section we considered the comparison of two specific
portfolios: ensemble portfolio and 1/K portfolio generated from a par-
ticular set of 10 large-cap mutual funds. In this section we provide
some statistical results on a sample of such portfolios.

In particular, we consider a universe of 21 large-cap mutual funds (a
list is presented in the Appendix). We generated 100 random portfolios
with each portfolio consisting of 10 funds. From each portfolio of 10
mutual funds, we computed an ensemble portfolio and a 1/K portfolio.
For these portfolios, we generated a number of histograms for annual
returns, tracking volatility and Sharpe ratios.

We start with examining the distribution of annual returns for these
100 1/K portfolios and corresponding ensemble portfolios for each year
from 2008 till 2016.
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Figure 10: Distribution of Returns

We see a significant shift in performance in favor of the ensemble port-
folios. For example, in 2013, 2014 and 2016 the difference in returns is
about 500 to 1,000 basis points for a typical ensemble portfolio in our
sample. To compare these returns to that of the market, we consider
the distribution of tracking error for the returns. This is shown in the
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figure below:
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Figure 11: Distribution of Return Tracking Errors

Except possibly for 2010, the ensemble portfolios seem to outperform
the market and the 1/K portfolios, sometimes quite significantly. On
the other hand, the ensemble portfolios seem to under-perform the

42



market. In fact, the 1/K portfolios in our sample under-performed the
market in

On the other hand, the increase in annual returns comes at a price of
increased volatility. Let us compare the distributions of tracking errors
for volatility for 1/K and ensemble portfolios.
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Figure 12: Distribution of Tracking Error for Volatility
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Next, we compare the distribution of tracking error for Sharpe ratio.
First, we note that the volatility of 1/K portfolios are comparable to
that of the market or slightly lower. If funds were independent and
exhibit low correlation with each other, we would expect a significant
decrease in volatility when averaging such funds to create 1/K portfo-
lios. The reason that we do not see such a drastic reduction in volatility
for 1/K portfolios is high degree of correlation between such portfolios
and between these portfolios and the market. On the other hand, the
volatility of ensemble portfolios is higher than that of the market as
managers concentrate in higher return stocks in hopes to beat the mar-
ket index. What we wee from these histograms is that the additional
increase in volatility over the 1/K portfolios is about 2%.

What does this mean? It means that with ensemble portfolios we are
paying a price of a modest increase in risk but gain much more in re-
turns. We can see this point more clearly if we examine the distribution
of tracking error for the Sharpe’s ratio.
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Figure 13: Distribution of Tracking Error for Sharpe Ratios

From the above histograms, we see that the Sharpe ratios for ensemble
portfolios dominate those for the 1/K portfolios.
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7 Conclusion

In this work we have provided a mathematical foundation for ensemble
machine learning. We have shown that if error probabilities for each
manager is less than 0.5 and manager decisions are independent, then
using a majority voting to make a decision results in lower error prob-
ability. This error probability can be made smaller by adding enough
managers to the ensemble. The resulting ensemble portfolio has higher
return than the corresponding stocks with weights from S&P-500. At
the same time, the risk of this ensemble portfolio does not exceed the
average of the risks of individual sub-portfolios.

8 Appendix: Large-Cap Funds Used in
Study
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